Regular factors in regular graphs

نویسنده

  • P. Katerinis
چکیده

Katerinis, P., Regular factors in regular graphs, Discrete Mathematics 113 (1993) 269-274. Let G be a k-regular, (k I)-edge-connected graph with an even number of vertices, and let m be an integer such that 1~ m s k 1. Then the graph obtained by removing any k m edges of G, has an m-factor. All graphs considered are finite. We shall allow graphs to contain multiple edges and we refer the reader tc [l] for standard graph theoretic terms not defined in this paper. Let G be a graph. We say that G has a k-factor, if there exists a k-regular spanning subgraph of G. If S, T c V(G), then ec(S, T) denotes the number and &(S, T) the set of edges having one end-vertex in S and the other in set T. If S c V(G) then w(G S) denotes the number of components of the graph G S. Given an ordered pair (D, S) of disjoint subsets of V(G) and a component C of (G D) -S, put r&D, S; C) = e&V(C), S) + k IV(C)!. We say that C is odd or even component of (G D) S according to whether rc(D, S; C) is odd or even. The number of odd components of (G D) S is denoted by q&D, S; k). Tutte [S] proved the following theorem. Tutte’s k-factor theorem. A graph G has a k-factor if and only if q&D, S; k) + 2 (k dcx(x)) 6 k IDI XES (1) forallD,SgV(G), DnS=8. Correspondence to: P. Katerinis, Department of Informatics, Athens University of Economics and Business, Patission 76, 10434 Athens, Greece. 0012-365X/93/$06.00 CiJ 1993 Elsevier Science Publishers B.V. All rights reserved

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructions of antimagic labelings for some families of regular graphs

In this paper we construct antimagic labelings of the regular complete multipartite graphs and we also extend the construction to some families of regular graphs.

متن کامل

OPTIMAL ANALYSIS OF NON-REGULAR GRAPHS USING THE RESULTS OF REGULAR MODELS VIA AN ITERATIVE METHOD

In this paper an efficient method is developed for the analysis of non-regular graphs which contain regular submodels. A model is called regular if it can be expressed as the product of two or three subgraphs. Efficient decomposition methods are available in the literature for the analysis of some classes of regular models. In the present method, for a non-regular model, first the nodes of th...

متن کامل

OPTIMAL ANALYSIS OF NON-REGULAR GRAPHS USING THE RESULTS OF REGULAR MODELS VIA AN ITERATIVE METHOD

In this paper an efficient method is developed for the analysis of non-regular graphs which contain regular submodels. A model is called regular if it can be expressed as the product of two or three subgraphs. Efficient decomposition methods are available in the literature for the analysis of some classes of regular models. In the present method, for a non-regular model, first the nodes of the ...

متن کامل

D-Spectrum and D-Energy of Complements of Iterated Line Graphs of Regular Graphs

The D-eigenvalues {µ1,…,µp} of a graph G are the eigenvalues of its distance matrix D and form its D-spectrum. The D-energy, ED(G) of G is given by ED (G) =∑i=1p |µi|. Two non cospectral graphs with respect to D are said to be D-equi energetic if they have the same D-energy. In this paper we show that if G is an r-regular graph on p vertices with 2r ≤ p - 1, then the complements of iterated lin...

متن کامل

A graphical difference between the inverse and regular semigroups

In this paper we investigate the Green‎ ‎graphs for the regular and inverse semigroups by considering the‎ ‎Green classes of them‎. ‎And by using the properties of these‎ ‎semigroups‎, ‎we prove that all of the five Green graphs for the‎ ‎inverse semigroups are isomorphic complete graphs‎, ‎while this‎ ‎doesn't hold for the regular semigroups‎. ‎In other words‎, ‎we prove‎ ‎that in a regular se...

متن کامل

Relationship between Coefficients of Characteristic Polynomial and Matching Polynomial of Regular Graphs and its Applications

ABSTRACT. Suppose G is a graph, A(G) its adjacency matrix and f(G, x)=x^n+a_(n-1)x^(n-1)+... is the characteristic polynomial of G. The matching polynomial of G is defined as M(G, x) = x^n-m(G,1)x^(n-2) + ... where m(G,k) is the number of k-matchings in G. In this paper, we determine the relationship between 2k-th coefficient of characteristic polynomial, a_(2k), and k-th coefficient of matchin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 113  شماره 

صفحات  -

تاریخ انتشار 1993